Despite its well-touted advantages, GH2 has its drawbacks- it is still a very expensive fuel source, mainly because of the cost of the renewable energy required to produce it.
As it currently stands, grey hydrogen is much cheaper to produce, costing $1-2 per kilogram, leaving aside the impact of the carbon emissions, of course. GH2 on the other hand varies between $3-8/kg in some regions (for example Europe) and thus makes it a more prohibitive option, climate considerations aside, according to a Price Waterhouse-Cooper study).
Therefore, regions with larger, cheap renewable energy resources like the Middle East, North America, Russia, Africa and Australia have a greater advantage, undercutting production costs to as little as $3-5/kg. It is predicted that these countries could further lower this cost to as little as $1-1.5/kg by 2050, due to increasing demand and increased renewable energy production capabilities. A price of under $2/kg could be the tipping point at which GH2 could become commercially viable on a global scale.
What contributes to this cost is also how energy-intensive GH2 is to produce and store- since hydrogen cannot be compressed as efficiently as hydrocarbons. To store hydrogen, it needs to be compressed to 700 times normal atmospheric pressure (four times that of natural gas) or brought down to a temperature of -253 C, near absolute zero. A possible solution is to convert it to ammonia (NH3) for transport, but each conversion means energy loss and a higher final price to the end user especially.
Also, given its volatile and highly flammable nature, green hydrogen must be kept under the most careful and stringent safety protocols. Keep in mind, hydrogen is 20 times more explosive than petrol!
According to industry leaders, the still-prohibitive costs, fickle supply, unsubstantiated demand, as well as the lack of adequate regulatory frameworks and infrastructure for green hydrogen have hindered it from becoming a significant part of the global energy system.
View Comments